Dimethylaminotrimethylstannane, a Powerful Dehydrochlorinating Reagent

By D. J. CARDIN and M. F. LAPPERT* (The Chemical Laboratory, University of Sussex, Brighton)

WE have found that dimethylaminotrimethylstannane is a remarkably powerful dehydrochlorinating reagent (see equation 1).

$$Me_{3}Sn-NMe_{2} + Cl-(A)-H \rightarrow Me_{3}SnCl\cdot HNMe_{2}+(A)$$
(1)

A selection of some reactions which follow this pattern is shown below.

$$IrHCl_{2}(PPh_{3})_{3} \xrightarrow{\text{xylene (80-100^{\circ})}}{2 \text{ hr.}}$$

$$IrCl(PPh_{3})_{3} \text{ (I) (2)}$$

$$xylene (80-100^{\circ})$$

$$IrH_{2}Cl(PPh_{3})_{3} \xrightarrow{\text{Hyperbolic}(00,100,7)}{l\frac{1}{2} hr.}$$
$$IrH(PPh_{3})_{3} (II) \qquad (3)$$

 $CH_3 \cdot CH_2 \cdot CH_2 \cdot CH_2 CI \xrightarrow{(40^\circ)} cis \cdot (5 \cdot 2\%)$ and trans-

(88.5%) CH₃·CH: CH·CH₃, and CH₃·CH₂·CH: CH₂ (6.3%)

Noteworthy features are (a) the mild reaction conditions, (b) the ease of separation of products (Me₃SnCl·HNMe₂ is insoluble in aromatic solvents, ether, and alkanes), (c) the near quantitative conversions, and (d) the difficulty, in some cases, of achieving alternative syntheses. As an example of (d), the transformation (2) could be not effected even with 1,5-diazabicyclo[4,3,0]non-5-ene¹ even under vigorous conditions [in contrast to (Ph₃P)₂-HIr(CO)Cl₂, which is dehydrochlorinated instantly to trans-(Ph₃P)₂Ir(CO)Cl by both reagents].

The efficacy of Me₃SnNMe₂ as a dehydrochlorinating reagent is attributed to a combination of factors, which include (a) the weak and highly polar Sn-N bond,² (b) the high basicity of Me₃SnNMe₃, (c) the high value of the heat of formation of crystalline Me₃SnCl·HNMe₂, and (d) for the inorganic reactions, the intermediate formation of compounds having metal-tin bonds. Additionally (e), attention is drawn to the capacity of amido-derivatives of tin (unlike organic bases) to exercise a synergic effect, since they are able to behave both as proton-² and halide ion⁴ abstractors. The evidence for (d) rests on the possibility, in favourable circumstances, of isolating compounds having tinmetal bonds as intermediates. For example, we have previously shown⁵ that interaction of trans-(Ph₃P)₂Pt(Cl)H and Me₃SnNMe₂ affords trans-(Ph₃P)₂Pt(Cl)SnMe₃ (III). We now find that prolonged heating of (III) in xylene affords the known⁶ bis(triphenylphosphine)platinum(0). As for (e), it is not invariably the case that Me₃Sn/H exchange [in the sense of equation (1)] precedes dehydrochlorination. For instance, we find that Ph₂SiH(Cl), when treated with Me₃SnNMe₂, afforded Ph₂Si(NMe₂)H and Me₃SnCl, thus demonstrating⁴ Me₂N/Cl exchange; dehydrochlorination to form a silvlene was therefore not accomplished.

It is likely that other amido-compounds [e.g., (Me₃Sn)₃N, and derivatives of the more electropositive elements] will behave similarly. The dehydrochlorination reactions of amido-tin compounds are clearly capable of wide extension. The utility of organotin-nitrogen derivatives as synthetic intermediates have previously been demonstrated in other connections.2,4,5

The chemistry of the species (I)^{7,8} and (II)⁸ is of particular interest. An experiment closely related to those summarised in equations (2) and (3) involved the new⁹ paramagnetic hydride OsHCl₂(PBuⁿ₂Ph)₃, which quantitatively afforded Me₃SnCl,HNMe₂.

(Received, August 30th, 1967; Com. 923.)

- ¹ H. Oediger, H. J. Kabbe, F. Möller, and K. Eiter, Chem. Ber., 1966, 99, 2012.
 ² Cf., K. Jones and M. F. Lappert, Organometallic Chem. Rev., 1966, 1, 67.
 ³ E. W. Abel, D. A. Armitage, and D. B. Brady, Trans. Faraday Soc., 1966, 62, 3459.
- ⁴ T. A. George and M. F. Lappert, *Chem. Comm.*, 1966, 463. ⁵ D. J. Cardin and M. F. Lappert, *Chem. Comm.*, 1966, 506.

- ⁶ R. D. Gillard, R. Ugo, F. Cariati, S. Cerini, and F. Bonati, Chem. Comm., 1966, 869.
 ⁷ M. A. Bennett and D. L. Milner, Chem. Comm., 1967, 581.
 ⁸ D. J. Cardin and M. F. Lappert, Proc. 3rd Internat. Symp. Organometallic Chemistry, Munich, 1967, p. 190.
 ⁹ J. Chatt, G. J. Leigh, and R. J. Paske, Chem. Comm., 1967, 671.